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Abstract We present an algorithm, based on the iteration of conformal maps, that produces
independent samples of self-avoiding paths in the plane. It is a discrete process approxi-
mating radial Schramm-Loewner evolution growing to infinity. We focus on the problem
of reproducing the parametrization corresponding to that of lattice models, namely self-
avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths
where consecutive points lie an approximately constant distance apart from each other. This
new method allows us to tackle two non-trivial features of self-avoiding walks that critically
depend on the parametrization: the asphericity of a portion of chain and the correction-to-
scaling exponent.

Keywords Self-avoiding walk · Schramm-Loewner evolution · Exact sampling ·
Natural parametrization

1 Introduction

The self-avoiding walk (SAW) is the prototypical lattice model for polymer behavior [1]. It
is defined as the uniform distribution over the set of all fixed-length nearest-neighbor walks
on some lattice, such that no site is visited more than once. Self-avoidance reflects what are
known as excluded volume effects in polymer science [2]. The universal aspects of the SAW
have been the subject of study for decades in the physical and mathematical literature. While
some of its properties are well understood and rigorously established (a thorough account
can be found in [3]), it still poses some difficult (and some seemingly impossible) problems.
Mathematical and theoretical advances in the study of the SAW have always been paralleled
by constant efforts for devising new algorithms and numerical strategies [4–6], and since it
is one of the simplest non-trivial models it can serve as a test ground for novel algorithms in
polymer science.
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A connection has been studied in two dimensions—both numerically and analytically—
between the critical SAW (in the limit where the number of steps goes to infinity) and a
continuum model, called Schramm-Loewner evolution (SLE). SLE is a one-parameter fam-
ily of stochastic processes in the complex plane producing random curves (traces) with
conformal invariance “built in”. It has been conjectured that when the parameter is equal to
8
3 the scaling limit of self-avoiding walks is obtained [7] (this is the case we will be focusing
on in this paper). Later, numerical evidence has been given in favor of this correspondence,
both in the half-plane [8] and in the whole-plane [9] geometries.

What we propose here is an algorithm for sampling self-avoiding paths in the plane, based
on a discretized version of SLE. Essentially, discrete paths are built by iterative composition
of rotations together with one simple conformal map that takes a small circle and pulls a
slit out of it. Thanks to the way SLE works, it is possible to efficiently produce independent
samples, since the algorithm is based on simple Brownian motion, which is very easy to
sample.

Self-avoiding walks on the lattice have a natural parametrization, which corresponds to
counting the number of steps along the walk. As long as one considers observables that
depend only on the support of the walk, the correspondence with SLE curves is well-
understood. But most of the quantities of interest in polymer physics do depend on the
labeling of points along the chain and can not be matched with their SLE analogues, since
SLE curves come with their own uncorrelated parametrization. Actually, the problem of
finding a sensible definition of natural parametrization for SLE curves is still debated in the
mathematical literature [10, 11]. From a numerical point of view, one needs an affordable
way of generating SLE samples with the parametrization corresponding to the proper time
of lattice models. One such method was introduced and studied by Kennedy [8] and will be
briefly reviewed in Sect. 3.

We hereby introduce a new method, based on the observation that the SAW—even when
both the number of steps goes to infinity and the lattice spacing goes to zero—is such that
the Euclidean distance between two consecutive points on the chain is constant throughout
the chain itself. We require the same property for the SLE discrete trace {γn}, trying to attain
an approximately constant step length

|γn − γn−1| ≈ λ. (1)

Discrete SLE chains are constructed by iterative composition of conformal maps, each one
being responsible for producing a step γn−1 → γn. The method we propose for keeping an
approximately constant step length does so by rescaling each step according to the Jacobian
of the conformal map that acts on the corresponding segment.

We focus on whole-plane SLE, so that our algorithm explicitly concerns the SAW in
the plane, but the same reasoning and methods could be easily translated to other geome-
tries, such as the chordal one. For instance, minimal modification is needed in order to treat
ensembles of self-avoiding walks with fixed endpoints lying on the boundary of the domain.

Section 2 is a brief introduction to the discrete process that we refer to as discrete whole-
plane SLE, which is the central object of interest lying at the heart of the algorithm; Sect. 3
introduces the issues about the choice of parametrization; Sect. 4 describes the numeri-
cal strategy used to reproduce the natural parametrization of lattice models in the frame-
work of discrete SLE; numerical results for the SAW are presented in Sect. 5: we measure
the asphericity of an inner portion of SAW—which is a highly parametrization-dependent
quantity—and we discuss the first correction-to-scaling exponent.



Exact Sampling of Self-avoiding Paths via SLE 1117

2 Discrete Whole-Plane SLE

We are not going to describe SLE here (the interested reader can find all the details in many
excellent reviews, such as [12–16]). The aim of this section is to present a discrete process
approximating radial SLE growing to infinity, i.e. a measure on curves with one end-point
in z = 1 and the other at ∞, living on the complex plane minus the unit disc, C \ D. A more
in-depth presentation can be found in [9]. An analogous discrete process in the chordal
geometry was introduced in [17], where its convergence to SLE was also studied.

Let us consider an ordered set of points

γn ∈ C \ D, n = 1, . . . ,N. (2)

We will call such a set trace or chain. We are going to describe a stochastic process whose
outcomes are such traces. Let {δj } and {�j } be two sequences of real numbers with �j > 0.
Consider the maps

φD

j (z) = (z + 1)2 − 2e−�j z − (z + 1)((z + 1)2 − 4e−�j z)1/2

2e−�j z
. (3)

These are conformal maps of D onto D\ [φD

j (1),1), whose action can be described as grow-
ing a slit [φD

j (1),1) inside D along the real axis, of length

1 − φD

j (1) = 1 − e�j (2 − e−�j − 2
√

1 − e−�j ). (4)

φD

j is the inverse map of the solution at time �j to the Loewner equation in the disc

∂tft (z) = ft (z)
exp(iat ) + ft (z)

exp(iat ) − ft (z)
, f0(z) = z, (5)

in the special case where the driving function is a constant at ≡ 0. Notice that φD

j is well-
defined also on the boundary of D.

By complex inversion we can then define a family of maps growing slits in the comple-
ment of D in C:

φj (z) = 1

φD

j (1/z)
. (6)

The conformal maps φj send C \ D onto C \ D minus a slit on the real line, whose length
is controlled by �j .1 Let us construct a trace by intertwining such maps with rotations of
the complex plane. We will consider the images of the point z = 1 under the chain of maps
obtained by alternately composing rotations and slit mappings, as follows:

γn = R1 ◦ φ1 ◦ R2 ◦ φ2 ◦ · · · ◦ Rn ◦ φn(1), (7)

where

Rj(z) = z exp(iδj ) (8)

1See the discussion in Sect. 4 for the relation between �j and the length of the slit.
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Fig. 1 (Color online)
Composition of conformal maps
giving rise to the trace. The first
(top-left) arrow corresponds to
the slit map φn , the second one
(clockwise) to the rotation Rn ,
the third one to φn−1, the fourth
one to Rn−1 and so on. The last
black arrow corresponds to the
last rotation R1. The dashed blue
arrow is the complete map gn.
Blue crosses in the last picture
identify the points {γn} that
constitute the trace

are rotations whose angles are the parameters δj . Let us call gn the n-th composed map, for
use in the next sections:

gn(z) = R1 ◦ φ1 ◦ R2 ◦ φ2 ◦ · · · ◦ Rn ◦ φn(z), (9)

so that γn = gn(1). In words, we traverse the sequences {�j } and {δj } backwards from n to
1 and for each j we compose a slit mapping of parameter �j with a rotation of angle δj .
Refer to Fig. 1. At first a single slit is grown, and the point z = 1 gets mapped onto the real
axis, some distance away from the disc, namely at φn(1). Then the universe is rotated and
another slit is grown by application of φn−1, so that the base of the previous slit—which still
lies on the unit circle after the rotation—will be sent somewhere on the new slit.2 Notice
that in general the shape of the old slit gets distorted because of the action of φn−1. The
process goes on until the first map is reached; at that time, a chain of n points has been
produced. Notice that, since the composition in (7) goes backwards from n to 1, adding a
step on the tip of the trace without changing the rest of the trace itself means inserting φn+1

at the rightmost place in (7) and then recomputing the whole chain.3

The trace obtained of course depends on the two sequences {δj } and {�j }, so that a
measure on the latter induces a measure on the former. We will draw δj and �j in such a way
that their relation be that of space versus time for the one-dimensional rescaled Brownian
motion. The easiest way of doing so is to draw the δj ’s as Bernoulli variables in the set
{√κ�j ,−

√
κ�j }—where κ is a positive real number—and we shall do so in the following.

We still have the freedom to choose the “time steps” �j . A careful choice of the latter is
what allows us to reproduce the parametrization of the lattice models.

The discrete process we have introduced here is expected to correspond to whole-plane
SLE with parameter κ in the appropriate limit (essentially, N → ∞), and in particular to the
SAW when κ = 8

3 . Notice that the presence of the unit disc as a forbidden region is expected
to become irrelevant if one looks at the trace sufficiently far away from the origin, so it is
not surprising that the lattice counterpart is full-plane SAW.

2We suppose for clarity that the rotations are small enough for this to be the case, but even if the base of the
slit remains on the circle the procedure explained here produces nonetheless similar sets of points {γn}.
3In the following we will mostly use letter n to denote an index running from 1 to N (labeling the points on
the chain) and letter j to denote an index running from n to 1 (labeling the incremental maps that build up
the n-th composed map), but this is not a strict distinction, since they actually label the same sequences.
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3 The Choice of Parametrization

The parameters {�j } defined in the previous section are the time steps of the discretiza-
tion. They represent the time at which the Loewner evolution with constant driving function
is to be evaluated in order to produce the slit maps defined in (3), which are the building
blocks of the discrete evolution. If one is interested in reproducing the actual SLE, where
time is indeed a continuous variable, one will want to have these parameters scale to zero.
The choice of how they do so entails a choice of parametrization on the resulting object. For
instance, taking a constant �j ≡ � and then sending � to zero yields SLE parametrized by
capacity, which means that the curves have linearly increasing capacity.4 Different defini-
tions can give rise to different parametrizations. This is not an issue when one is interested
only in parametrization-independent features of the curves, such as the fractal dimension,
the multifractal spectrum, the distance of the curve from some given point, or the probability
of passing on the left or right of an obstacle, to name a few. But it becomes crucial when
one focuses on parametrization-dependent observables of the lattice models. Such are for in-
stance the distribution of a given point inside a SAW, the gyration tensor, properties related
to the detailed shape of the walks and the universal quantities that describe the approach of
an N -step chain to N = ∞, such as the correction-to-scaling exponents (see Sect. 5). Our
goal is to find a choice of {�j } capable of reproducing the natural parametrization of the
lattice walk models.

The first thing one notices when producing discrete chains with the algorithm described
in Sect. 2 is that the parametrization by capacity yields points that get further and further
away from each other as the process goes on. The step size

ln = |γn − γn−1| (10)

diverges when n → ∞. One can then choose to scale the time steps in such a way as to
compensate for this. It turns out (see [9] for more details) that choosing

�j ∼ j−1, (11)

at least definitively in j , cancels out the drift in the distance between consecutive points.
Notice that this choice is non-random, meaning that the reparametrization scheme does not
depend on the realization of the stochastic process. Instead, the values of {�j } are chosen
before the actual simulation takes place. Unfortunately, this strategy does not give the cor-
rect parametrization (see also [18], where the same reasoning is applied to the half-plane
case). For instance, as far as the spatial distribution of the k-th point (for a given k) along
the chain is concerned, it gives exactly the same results as the parametrization by capacity.
What happens is that the scaling form (11) only ensures that the average distance 〈ln〉 be-
tween consecutive points be constant (the average is over the realizations of the stochastic
process). But fluctuations around this average still retain all their correlations, since we are
reparametrizing in a naive, non-random fashion.

One solution to this problem was proposed and studied by Kennedy [8, 18], and is par-
ticularly adapted to the case when one is interested in the position of just a single point
along the curve. The idea is to grow the trace with its parametrization by capacity and
stop the growth when a fixed “length” has been reached. A definition of length for a dis-
cretized fractal object can be introduced, which turns out to be naturally dependent on a

4The (logarithmic) capacity is defined as the logarithm of the coefficient of the term z−1 in the expansion
around ∞ of gn(z).
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fixed length 	, that is the scale the fractal length (or variation) is measured at. Some care
must be taken when using this method, because of the dependence of the results on the
choice of the scale 	. One would like to send 	 to zero, in order to measure the variation
at a finer and finer mesh, but at the same time 	 can not become too small as compared to
the step size of the discretized trace, otherwise wilder and wilder rounding problems would
completely spoil the computation. Moreover, one wants to send the total length of the curve
to infinity, which by scale invariance amounts to shrinking the unit disc down to a point,
so as to approach the truly whole-plane geometry. One is therefore confronted with a tricky
double limit, which increases the effort to be put into the analysis of the numerical data, and
can blur the estimation of the errors.

The method based on fractal variation is especially suited for producing a single point
on the chain at a given value of the parametrization. The strategy we shall adopt here is
different. We aim at producing a discrete trace where the step sizes ln are strictly constant
throughout the chain. Stopping the discrete growth after a fixed number of steps will then
be automatically equivalent to choosing the stopping time when a fixed value of the fractal
variation is reached. The advantages of this strategy are manifold: one obtains an essentially
arbitrary number of points equally spaced in the natural parametrization at the same cost
as producing only the last one, and no computationally-delicate double limit is present, so
that no additional scaling analysis must be performed. Moreover, no prior knowledge of the
fractal dimension d is needed.

4 The Numerical Strategy

A close relative to the slit mapping in (3) first appeared in the literature about diffusion-
limited aggregation, or DLA. DLA—introduced by Witten and Sander [19]—is a kinetic
model where finite-sized particles perform random walks (one at a time) from infinity until
they stick irreversibly to a cluster, which grows from a seed placed at the origin. Hastings and
Levitov [20] took advantage of the conformal symmetry inherent to this model and proposed
an algorithm which turns out to be similar to what we use for simulating Schramm-Loewner
evolutions. The algorithm works as follows. The seed of the growth is the unit disc. At each
time-step, an angle θj is chosen with the uniform distribution in [0,2π). A conformal map
φAj ,θj

is applied, that creates a bump of fixed area Aj centered at eiθj . Then, another θ is
chosen, the maps are composed, and so forth. Note that—as is the case for (9)—if gn−1 is
the map that grows the cluster up to the (n − 1)-th deposed grain, then the map that grows
the cluster up to the n-th grain is obtained by first applying the incremental map φAn,θn and
then gn−1, which is to say that the incremental maps are composed in the opposite order than
usual.

This growth process satisfies an even stronger version of the domain Markov property,5

which is one of the crucial characteristics of SLE [21], since now the growth of the cluster
at a specific time does not even depend on where it last grew, so not only does the future not
depend on the past, but—modulo a conformal transformation—it does not depend on the
present either.

An important technical aspect of this algorithm is that one wants to grow bumps of ap-
proximately equal size. But peripheral bumps have undergone several conformal maps and
have thus changed their shape and size to a great amount. In general, by the time the whole

5It is essentially the usual Markov property, but “up to” a (time- and realization-dependent) conformal trans-
formation of the domain.
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cluster has been built, the n-th bump created (by φAn,θn ) has been subject to the action
of gn−1. To compensate for this rescaling, one wants to create bumps of different sizes, de-
pending on the whole history of maps they will be subject to in the remainder of the growth
process. As a first approximation, as long as the new (n-th) bump is sufficiently small, it is
natural to try and correct only for the Jacobian factor |g′

n−1| of the previous composed map,
calculated at the place where the new bump is to be created, because this is the rescaling
factor that will affect the shape of the bump at first order in its size. The n-th bump size
should then be

An = A0

|g′
n−1(e

iθn )| . (12)

Since this strategy seems to give satisfactory results, it is very natural to try and apply it to
the numerical reparametrization of SLE: rescaling the step sizes of the approximated SLE
trace by the dilatation factor given by the Jacobian (very similar ideas were also fruitfully
exploited in [22], where multifractal spectra for Laplacian walks are computed).

The size Ln of the n-th slit grown is a function of the time-like parameter �n which
controls the capacity of the incremental map at step n:

�n = log
(2 − Ln

1+Ln
)2

4(1 − Ln

1+Ln
)
, (13)

as can be seen by inverting (4). One wants to rescale �n so that Ln gets rescaled by a factor
given by the Jacobian

Jn = |g′
n−1(e

iδn )|, (14)

in analogy with (12).
Unfortunately, there happens to be a great obstruction to this program, due to the fact

that SLE satisfies “only” domain Markov property, instead of the complete independence
of DLA steps that we discussed above. If we look at (12) we see that rescaling the step-
sizes is possible because of the independence of θn (the space-like variable) from An (the
time-like variable). This independence in DLA stems from the fact that the distribution
of the θn’s is flat on [0,2π) and does not change, so that one can operatively choose every
step θ0, θ1, . . . before performing the composition of the corresponding maps. In SLE, on the
contrary, despite the fact that the steps satisfy the domain Markov property, the increments δn

are drawn with a Bernoulli distribution from the set {√κ�n,−√
κ�n}, which does depend

on time, since it depends explicitly on the time-like parameter �n; on the other hand the
Jacobian needed to rescale �n is to be evaluated at exp(iδn). Therefore, the problem is that
we do not really know where to compute the Jacobian, until we have actually computed it!
This is ultimately related to the fact that SLE is driven by a non-trivial stochastic process,
so that �n and δn are intertwined.

The reader can find a depiction of how the length of the slit Ln and the angle δj are
related in Fig. 2, which is a polar graph (for −π < δn < π ) for the position of the tip of the
slit as a function of the angle—as can be found by inverting (13):

Ln(δn) = exp(−δ2
n/κ)

2 − exp(−δ2
n/κ) − 2

√
1 − exp(−δ2

n/κ)
− 1. (15)

Thus, the main problem with the foregoing approach is that δn and �n depend on one
another, so that one does not know where to compute the derivative. One way to overcome
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Fig. 2 (Color online) The locus of the points Rn ◦ φn(1) (dashed blue lines), as δn and �n take on their
allowed values. The red circle is the unit disc; the red arrows are examples of the possible slits grown

this problem is the following. Expand the derivative of gn−1 (the map that grows the hull
at step n − 1) around its zero, which occurs at z = 1, and evaluate it at the point exp(iδn),
which is the point where the n-th slit is going to be placed:

g′
n−1(e

iδn ) = g′
n−1(1) + (eiδn − 1)g′′

n−1(1) + · · · (16)

This expression is accurate when δn is small. On the other hand, we also want to approximate
the change in length of the slit by the value of the derivative at the base, silently assuming
that it does not change much along the slit. This approximation is justified by the fact that,
by (15), Ln(δn) is proportional to δn for δn small.

By expanding the exponential, taking the modulus, and remembering that g′
n(1) = 0 for

every n—as can be seen by taking the derivative of (9) with φn given by (6) and (3)—one
obtains the Jacobian (14) at order |δn|

Jn−1 ≈ |δn||g′′
n−1(1)|. (17)

We want to rescale the length Ln of the n-th slit by Jn−1, so we rewrite the equation relating
�n and Ln (13) by substituting

Ln = λ

|δn||g′′
n−1(1)| , (18)

where λ is the desired step length (as in (1), which represents our goal), and by making use
of the Brownian relation

|δn| =
√

κ�n. (19)
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We obtain an equation which (if solved) gives the time-step �n producing both the correct
rescaling, at first order in δn, and the right relation with the space-step δn:

e�n = 1

4

(
2 − λ

λ + |g′′
n−1(1)|√κ�n

)2(
1 − λ

λ + |g′′
n−1(1)|√κ�n

)−1

. (20)

The actual sign of δn = ±√
κ�n is to be chosen at random, according to the Bernoulli nature

of δn.
Unfortunately, (20) is transcendental, and can not be solved explicitly. A little thinking

shows that for |g′′
n−1(1)| large one expects a small �n. In fact, (20) implies that the combina-

tion |g′′
n−1(1)|√κ�n be divergent when �n → 0. A crude approximation is then obtained by

expanding the left hand side in powers of �n around 0, the right hand side in |g′′
n−1(1)|√κ�n

around ∞ and matching the two behaviors at first order. This is the best one can do, since
higher orders would require solving algebraic equations of order greater than 4 in

√
�n.

Among the solutions we choose the positive one:

�n = λ

2
√

κ|g′′
n−1(1)| . (21)

Numerical solution to (20) shows that (21) is off by ∼ 20% when |g′′
n−1(1)| = 10 and by

∼ 5% when |g′′
n−1(1)| = 100, for λ = 1. The approximation works (see Sect. 5) because the

typical values of |g′′
n−1(1)| involved are large.

Of course, the foregoing method can be used only if one has an effective means of com-
puting the main ingredient: |g′′

n−1(1)|. It turns out that there is such a way. Straightforward
calculations show (the details are in the Appendix) that

|g′′
n(1)| = |φ′′

n(1)|
n−2∏

j=0

|φ′
n−1−j (�j )|, (22)

where �j is defined as

�j = Rn−j ◦ φn−j ◦ Rn−j+1 ◦ φn−j+1 ◦ · · · ◦ Rn ◦ φn(1). (23)

Equation (22) is a closed formula for the Hessian, in terms of |φ′′
n(1)|—which only depends

on �n, see (32)—and the function φ′—see (30) and (31). Notice that the points �j=0,...,n−2

must already be computed by the routine that produces the n-th point on the trace γn =
R1 ◦ φ1 ◦ · · · ◦ Rn ◦ φn(1)—as was explained in Sect. 2—so that computing |g′′

n(1)| adds
very little computational load. At the n-th step of the algorithm—i.e. when producing the
n-th point along the chain—one can compute the factor |g′′

n(1)|, which will be needed for
producing the (n + 1)-th point, simply by multiplying the constant |φ′′

n(1)| together with all
factors |φ′

n−1−j (�j )| obtained at each composition that is performed to compute γn. This
amounts to performing an operation taking a time O(1) for each composition, which sums
up to O(n) for the n-th point—that requires n compositions—and finally to O(N2) for a
complete N -step chain.

Let us schematically sum up how our algorithm for building an N -step chain works:

1. Set the constant λ (we shall always fix λ = 1)
2. Set n ← 1 and �1 ← 1
3. Compute δn as ±√

κ�n with a random sign
4. Setup a temporary variable D ← |φ′′

n(1)| calculated as in (32)
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Fig. 3 (Color online) An
example of a trace obtained by
the full algorithm described in
Sect. 4 (in blue), compared to a
trace obtained with simple global
rescaling of the steps (in red).
The sequences of signs in
σn = ±√

κ�n (that is, of
left/right turns) are the same

5. Set j ← n and z ← 1
6. Cycle on j for computing γn:

a) Apply j -th incremental map and rotation z ← Rj ◦ φj (z)

b) If j > 1 multiply D by |φ′
j−1(z)| calculated as in (30) and (31)

c) If j > 1 decrease j by 1 and repeat step 6
7. Set γn ← z

8. Compute �n+1 as in (21) with |g′′
n(1)| given by D

9. If n < N increase n by 1 and go back to step 3

An example of a chain obtained by this method is presented in Fig. 3, where it is com-
pared with a chain obtained by non-random rescaling as in (11).

5 Asphericity and Corrections to Scaling

Given a chain {γn}—both for a walk on the lattice and for a discrete SLE trace—one can
define its gyration tensor, which encodes useful information about the shape of the walk.
Since the process we have defined grows a chain towards infinity, it can not be compared to
a whole N -step walk on the lattice, because the latter displays finite-chain corrections close
to its tip. For this reason, we define the internal gyration tensor, by following the definition
of gyration tensor that is used in polymer science, but by taking into account only the first
M monomers:

Gαβ(M) = 1

2M2

M∑

i,j=1

(γ α
i − γ α

j )(γ
β

i − γ
β

j ), (24)

where the superscripts α and β take values on the x and y coordinates of a lattice site or on
the real and imaginary parts of a complex number. Let q1(M) and q2(M) be the two (real)
eigenvalues of the (symmetric) gyration tensor. These quantities are not universal, but some
of their combinations are believed to be, such as the asphericity:

A(M) =
〈(

q1(M) − q2(M)

q1(M) + q2(M)

)2
〉

, (25)
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Fig. 4 (Color online) The internal asphericity of a SAW as a function of the fraction of walk considered. The
error (not shown in figure) is ≈ 10−4 for each point (about the size of the red crosses), but this is to be taken
cum grano salis, since different points on the plot are obtained from the same set of walks and are therefore
not independent

which is a measure of how spherical the object is, being 0 for perfectly spherical objects (for
which the two eigenvalues are equal) and 1 when one of the eigenvalues is 0 (as happens for
objects lying on a line).

The (critical) limit we are interested in is when the number of steps N goes to infinity,
because this is the limit where the SAW displays its universal behavior and where the cut-
off at length 1 introduced by the disc-shaped forbidden region becomes irrelevant for the
discrete SLE. On the SAW side, moreover, we will want to let M → ∞, so as to avoid
corrections to scaling, but in such a way as to have M/N → 0, since we want to be looking
at a portion deep inside the walk.

We have simulated the self-avoiding walk on the square lattice using the pivot algorithm
[23, 24] and we have measured the internal asphericity as a function of M/N for N =
100 000 and M = k ·1000 with k = 1,2, . . . ,99. The results are in Fig. 4; the curve plotted is
expected to be universal, and to our knowledge has never appeared in the literature. In order
to obtain the value at M/N = 0 we perform a fit of the form f (M/N) = ASAW

0 + α(M/N)θ

on the first few values (namely M/N ∈ (0,0.2]) in the graph.6 obtaining

ASAW
0 = 0.51343(5)

[θ = 0.92(5)].
The same measure (now with M = N ) is performed on ensembles of 20 000 discrete SLE

traces (κ = 8
3 ) of lengths N = 100,200,400,1000,2000,5000, (and 5000 traces of length

10 000) produced with the algorithm described in the previous sections. The results are in
Table 1.7 The simulation for N = 400 took approximately one hour on a 2 GHz Intel Duo
processor.

6The results show a strong stability as the upper cut-off in M/N is changed, up to around the middle of the
chain, where they start to drift.
7We have also run simulations (for N = 100,200,400) using a numerical solution to (20), for the sake of test-
ing the approximation in (21). The results agree with those in Table 1 [0.4956(17), 0.5030(17), 0.5069(17)

for N = 100,200,400 respectively].
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Table 1 The asphericity of
discrete SLE traces for κ = 8

3 ,
computed for several lengths N

N ASLE

100 0.4957(17)

200 0.5019(17)

400 0.5071(17)

1000 0.5097(18)

2000 0.5115(17)

5000 0.5122(18)

10 000 0.5124(37)

In general, for an N -step chain one expects the following behavior for the expectation
value of a global observable O:

〈O〉N
NpO

= a + a1

N
+ a2

N2
+ · · ·

+ b0

N�1
+ b1

N�1+1
+ b2

N�1+2
+ · · ·

+ c0

N�2
+ c1

N�2+1
+ c2

N�2+2
+ · · ·

+ · · · , (26)

where the leading behavior (given by the exponent pO ) is corrected by analytical (with
integer exponents) and confluent corrections. The exponents8 (�1 < �2 < · · ·) are universal.
The asphericity is expected to be a constant in the large-N limit, so that pA = 0. The scaling
form (26) then suggests a fit of the form f (N) = ASLE + b0/N

�1 , which yields

ASLE = 0.51351(54)

�1 = 0.694(60).

The asphericity is in perfect agreement with the one obtained for the SAW. Our result for
�1 agrees with the theoretical value (�1 = 11

16 = 0.6875) obtained by conformal-invariance
methods for polymers in good solutions [25]. The evaluation of �1 for SAWs has been the
subject of debate in the past decades. In fact, the rich structure of corrections in (26) makes
it difficult to extract precise values from numerical data. There is now strong evidence for
the absence of a leading term with exponent �1 = 11

16 on the square lattice, the first non-null
confluent contribution having exponent 3

2 [26]. Notice that this does not configure a violation
of universality, since the amplitudes of the corrections are model-dependent. By including
the first analytical correction (at next-to-leading order) and fixing �1 to its theoretical value,
we find

ASLE = 0.51356(44)

a1 = 0.003 ± 0.362,

where the amplitude a1 of the term a1/N is compatible with 0.

8The symbols �1, �2, . . . are those conventionally used for these quantities: they do not have anything to do
with the �j ’s used in previous sections.
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6 Conclusions and Outlook

We have studied a stochastic process in the complex plane, based on discrete Stochastic-
Loewner evolution, which gives rise to chains {γn} with approximately constant steps
|γn −γn−1|. The purpose was to build an algorithm for exactly sampling self-avoiding paths,
by correctly reproducing the parametrization induced by the scaling limit of lattice mod-
els, namely self-avoiding walks. The method is based on iterative composition of confor-
mal maps, where each map acts by building a radial slit out of the unit circle, which will
eventually become one of the steps of the discrete path. Each step has to be rescaled ac-
cording to the Jacobian of the map that evolves it. This program encounters some technical
hindrances—essentially due to the fact that rescaling a step actually changes the Jacobian.
We showed that an alternative approach is possible, by keeping track of the second deriva-
tive of the map. It turns out that the Hessian can be effectively computed in the framework of
iterated conformal maps, since it can be expressed as a simple function of quantities already
computed by the algorithm.

By exploiting the powerful correspondence existing between SLE and SAWs, the al-
gorithm presented here produces completely independent samples of self-avoiding paths
from the origin to infinity in the plane, whose parametrization is the desired one—that cor-
responding to SAWs—, and does so in an affordable way, with a complexity O(N2) for
N -step chains. This allows us to study parametrization-dependent observables of the SAW
such as the internal asphericity and the leading correction-to-scaling exponent, whose de-
termination is considered a challenging problem in the numerical study of polymers. The
results we obtain are very accurate.

The analysis has been carried out in the whole-plane radial geometry, but very little
should be changed in order to adapt it to the half-plane chordal case, or to other restricted
geometries of interest in polymer science.

Interesting questions remain open. It is still not clear whether there exists a way of re-
producing finite-chain effects by the foregoing techniques. It would be useful for instance
to produce the correct distribution of the end-point of a SAW, which is fixed to infinity in
the present study. On the other hand, a great advance would be to translate this method to
other classes of critical polymers, such as the θ point where the collapsing transition poses
even more difficult problems to Monte Carlo methods due to the attractive interactions and
the consequently entangled shapes.

Acknowledgements The author wishes to thank Sergio Caracciolo and Andrea Pelissetto for suggestions
and encouragement.

Appendix: Computing the Second Derivative of gn

In this Appendix we give a formula for the modulus of the second derivative of gn, which is
needed in a crucial step of the algorithm.

The n-th composed map (9) can be written as

gn(z) = gn−1 ◦ Rn ◦ φn(z) (27)

in terms of the (n− 1)-th map gn−1, for n > 1. We recall that Rn and φn are the n-th rotation
and slit mapping respectively and that Rn(z) implicitly depends on the parameter δn, while
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φn depends on �n. The second derivative of (27) reads

g′′
n = (g′′

n−1 ◦ Rn ◦ φn)(R
′
n ◦ φn)

2(φ′
n)

2

+ (R′
n ◦ φn)(φ

′′
n)(g′

n−1 ◦ Rn ◦ φn). (28)

The latter expression simplifies when evaluating its modulus at z = 1, because φ′
n(1) = 0—a

hallmark of the singularity of the Loewner map in 1—and |R′
n ◦ φn(z)| = 1. One obtains

|g′′
n(1)| = |φ′′

n(1)||g′
n−1 ◦ Rn ◦ φn(1)|. (29)

Computing the first factor |φ′′
n(1)| is just a matter of differentiating (6) two times with φD

j

given by (3), which yields

φ′
n(z) = φD ′

n (1/z)

z2[φD
n (1/z)]2

(30)

with

φD ′
n (z) = (z − 1)[e�n(z + 1)(

√
(z + 1)2 − 4e−�nz − z − 1) + 2z]

2z2
√

(z + 1)2 − 4e−�nz
, (31)

and

|φ′′
n(1)| = 1

2
e�n

(
2 +

√
1 − e−�n + 1√

1 − e−�n

)
. (32)

For the second factor |g′
n−1 ◦ Rn ◦ φn(1)|, instead, a closed recursion can be found by noting

that, by differentiating (27), one has

|g′
n−1| = |g′

n−2 ◦ Rn−1 ◦ φn−1||R′
n−1 ◦ φn−1||φ′

n−1|
= |g′

n−2 ◦ Rn−1 ◦ φn−1||φ′
n−1|, (33)

so that

|g′
n−1 ◦ Rn ◦ φn(1)| = |φ′

n−1 ◦ Rn ◦ φn(1)|
× |g′

n−2 ◦ Rn−1 ◦ φn−1 ◦ Rn ◦ φn(1)|. (34)

The seed of the recursion is given by the first slit grown

g1(z) = R1 ◦ φ1(z), (35)

so that finally from (29), (33) and the derivative of (35) one obtains

|g′′
n(1)| = |φ′′

n(1)|
× |φ′

n−1 ◦ Rn ◦ φn(1)|
× |φ′

n−2 ◦ Rn−1 ◦ φn−1 ◦ Rn ◦ φn(1)|
· · ·
× |φ′

1 ◦ R2 ◦ φ2 ◦ R3 ◦ φ3 ◦ · · · ◦ Rn−1 ◦ φn−1 ◦ Rn ◦ φn(1)| (36)
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or, in a more compact form,

|g′′
n(1)| = |φ′′

n(1)|
n−2∏

j=0

|φ′
n−1−j (�j )| (37)

with �j defined as in (23).
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